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RANKING AND SELECTION IN DESIGNED EXPERIMENTS:
COMPLETE FACTORIAL EXPERIMENTS*

by

Edward J. Dudewicz

and

Baldeo K. Taneja

ABSTRACT

As early as the first paper of Bechhofer on ranking and

selection in 1954 it was recognized that, with a ranking and

selection goal as well as with other goals such as estima-

tion or hypothesis testing, it might be desirable to carry

out one's experiment in some design other than the complete-

ly randomized design. Nevertheless, over the years almost

all of the papers in the area have developed their methods

and theory explicitly only for the completely randomized

design. In this paper we review what is known about ranking

and selection in design settings other than the completely

randomized design, and then proceed to new results on the

complete factorial experiment setting. J

i m i
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1. INTRODUCTION

r In the first paper on ranking and selection, Bechhofer (1954)

f- recognized the importance of allowing for experiments carried out

in some design other than the completely randomized design. For

full references see Dudewicz and Koo (1981). In this paper we:

briefly survey the state of knowledge of ranking and selection in

designed experiments (Section 2); discuss factorial experiments

without interaction in some detail (Section 3); and give new

results for factorial experiments where interaction may be present

(Section 4).

2. RANKING AND SELECTION IN DESIGNED EXPERIMENTS

In the basic formulation of the ranking and selection problem,

there are K populations (sources of observations) 7,, ---1 7r with

respective unknown means Pi,, "') VK for their observations, normally

distributed with common known variance 02 > 0, and the goal is to

select a population whose mean is P[K]' where P[l] I .[2] " '[K]
are the ordered i' ... I K" Achieving this goal is called making a

Correct Selection (abbreviated as CS). Bechhofer (1954) gave a
single-stage procedure which guaranteed that P(CS) > P* whenever

-*(I/K < P* < 1, 0 < 6*). There have been many papers

written in the area, with extensions in many directions; see Dudewicz

(1980).

Bechhofer (1954) dealt mainly with the completely randomized

design, but also considered the 2-factor factorial experiment without

interaction, giving the Factorial Procedure SPI of Section 3 below.

He briefly noted how to similarly solve the r-factor factorial

experiment (again without interaction) with SPl. Also see pp. 77-82

of Gibbons, Olkin, and Sobel (1977) for examples, restricted to the

no-interaction case.

Bawa (1972) compared Bechhofer's SPI to the traditional One-at-

a-time Procedure SP2 in a no-interaction setting, and found SPl is

superior in asymptotic efficiency.

2L.!



A procedure for the factorial experiment with interaction

(Interaction Procedure SP3 in Section 3 below) was given in
A. Dudewicz (1977), and independently simultaneously by Bechhofer

(1977).

For the problem of selecting the best regression, Dudewicz

(1976, Section 14.4) noted the solution (also see Chapter 9 of

Gibbons, Olkin, and Sobel (1977), with an erroneous claim of

originality on p. 241). The problem of selecting the largest

interaction was addressed by Bechhofer, Santner, and Turnbull

(1977). Rinott and Santner (1977) applied inequalities to design

an experiment to select the best treatment in an analysis of

covariance model.

3. RANKING AND SELECTION IN FACTORIAL EXPERIMENTS:
NO INTERACTION

Suppose an r-factor (r > 2) factorial experiment with k

(kj > 2) levels of factor j (j 1, 2, ... , r). Assume observations

are normally distributed with known common variance 02 > 0 and that

for an observation taken at {level iI of factor 1, level i2 of factor

2, ... , level i of factor r}
r

I2 rj 1

(i z 1, 2, ..., kj; j 1, 2, ... , r) where V and ij) are unknown
]

parameters with

k.

0 (j 1, 2, ..., r).

For each fixed j (j = 1, 2, ..., r), let

(j) (j) < (j)[1] < [2 < <" [k ]
< i

r]

[3



deoetee(j) kUj

denote 'the oil , . k. in numerical order. Each factor-level

combination 2 ir) is called a population, and a "best"
population (among all K klk2  k. populations) is any one with

maximum ECX. i.e. any one with mean
12 r

P[K] = P + ,(l) + +(2) + + U(r)

[k1] [k] l Lkr]"

I Define (for j 1 1, 2, ... , r)

6. ) a(j)

Then set 6* = ( 2*1 62 6 *) and P* (0 < 1* 2 .62* 
6r <I/K < P* 1) and seek procedures& which guarantee the probability

reuirement

P(CSI9) > P* whenever 6 > 4* componentwise.

Three procedures proposed in the literature are the following.

Procedure SPl (Factorial Procedure). Take N independent

observations from each of the K populations. Let .J) denote

J the (marginal) sample mean of all observations having the jth

factor at level i. (j 1 1, 2, ... , r). For each j, let
7M !Zs) ) denote R(J) . (j) in numerical order.

Ell[kj i "'s k "

Select the level associated with the largest (marginal) sample
mean of each factor, i.e. with 7l], [2)%(r) .,, and

assert that that population (factor combination) is best. (NK

observations are used.)

Procedure SP2 (One-at-a-time Procedure). Fix the level of
each factor except factor j, take N. observations at each level

of factor j, and compute the sample mean at each such level.

Then select the level (of factor j) yielding the largest such

!4
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sample mean. Proceed similarly for j 1, .. ,r (keeping
11selected" levels fixed for the corresponding factors), taking,I a ;et of independent observations at each Stage of experim-2ntation.

Finally state that the population corresponding to the selected

factor levels is best. ( I k. N. observations are used.)

Procedure SP3' (Interaction Procedure). Take M independent

observations from each of the K populations. Select the population

yie~lding the largest sample mean as best. (MK observations are

used.)

In order to compare procedures SPi, SP2, SP3 let n 1 , n2 ., n 3

denote the respective smallest number of observations each procedure
needs in order to guarantee the probability requirement. From Bawa

1 (1972) we know

mn Mi{NK: N such that nI (1 - e ~ )> P*}

j=1

adr r -ajN.
n min( k kNI: (Nl, N.) such that TI (1-e jI) >P~j,

I where (for j 1, 2,..,r

Ia. 3 -N NK

IUsing asymptotic calculus as in Bawa (1972) and Dudewicz (1969)

it follows that

I k.
n1 -.4ay2 og(l~p*) max -3- + o(l-P*).

r k
r. -i4o'log(l-P*) I + B

2 j~l (64)2

where a IN, b means the limit of a/b is 1 as P* I and B does not

Idepend on P* Also (Dudewicz (1969))

n- -4ozlog(1-P*) K6)

I S)
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where P(CSISP3) ) P* is guaranteed for " [K] - U[K-13 -

Therefore
C -.

max{

ARE(SP1, SP2) r lim = : (6*?
n r k.P*-I n2 1 1 *__ )___

* 3:I (6.*)2

nl (6

1 6 2 a
ARE(SPI, SP3) im - max

P - n' 3 K !<j<r (6-*)2

n 2 6*)2 r kI

ARE(SP2, SP3) lim 2 _ " 7P*-I- n3 K =-' 6 * ) 2

Note that

-L) - max (P + a - 6 i
j-1 i<r j: I

min{61 , 6r,l}

hence 6 > 6* and 6* min(61*, 6 *) furnish comparable probability

requirements for SP!, SP2, and SP3. Letting c be that j (1 < j < r)

where k /(6.*) 2 is maximized,

ARE(SPI SP3) (6*)2 kc 1

(6c

(since 6* < 6c* and k c < K), and

ARE(SP2, SP3) < 62 rK c 1(6 *)2

Hence SPI and SP2 are each more efficient than SP3. In the "symmetric"

I case k = k = kr k and 61 2 * "" r*=

1 21

Ii ARE(SP1, SP2) :, ARE(SPI, SP3) = k

ARE(SP2, S - r

6



Thus, when there is no interaction, SPI is best and

SP3 is worst. However, we see (Section 4) that

SP3 is fully resistant to interaction, whereas SPI and SP2

are not.

4., RANKING AND SELECTION IN FACTORIAL EXPERIMENTS; INTERACTION

We will now study factorial exnerijents with interactions.

So, we suppose an r-factor (r > 2) factorial experiment
with k. levels of factor j Q = 1, ... , r) and assume our

observations are normally distributed with known common

variance a2 > 0 and that if Xili2 " " i is an observation taken

at (level iI of factor 1, level i2 of factor 2, .. , level

of factor r} then

E(.r (j 1 ) P r
, + 31= I + 1 i i +

(r r j 2 ... "r- )  (12...r)
! r=l 1 jr 2 1 2 r3i2. ]r_ 1

2 1 IIj2---Ir-l

(i 1, 2, ... , k. for j 1, 2, ... , r) where U and the

" 's are unknown parameters with

k.
Oi 0 for jI 1, 2, ... , r ;

C- Jl
k. k.

i. :I j2 i=iaj I13j2
2

(for jl(=l, 2, ,.., r) < j2(=l, 2, ... ,

7
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4

kk5 k

k 1 . k 2 (jlj( ) " 2 3 )

1 2 ,j 3j 2j
i.: I-21j3 i 2 1 3 ]

(for jI(=i, 2,.. r)<12"= 2, .. ,r<3-,2, 0., );

I and so on; and lastly
k1  k2  

kr (1 2...) 0

cL i 2 (1 2.. .r ) Q . ..r)

1 r 2' "  ir "'

(i. 1 2, ... , k. tot 5 1, 2, ... , r). For each fixed

j ( 1i, 2, ... , r), let

• . e[1 - [2) - "" --_[]

denote the al )  CE2) "'' tk! in numerical order.

This r-factor experiment may be conceived of as an r-

dimnsinalcuboid. Each factor-level combination

(U1, i2' ... ' ir ) is called a population, and a "best"

population (among all K = klk.C.. kr populations) is any one

with (Xi i ) maximized over all r-tuples (ill i2 3'r tall{ed cells).
Once observations have been taken, let

denote the sample mean of all observations in cell "

(i, i2 , ..., r ), and define the (marginal) sample 
means

k2  k 3  k r

I.. i2 i i3 1 i 1 -

11il . 2k3 ".'kr 1, 2, ... ,

i 
!ii

II It



I i I ii1£i2  (i = 1, 2,  . k2)
k 1k 3 ' I 1 klk3 . 12,1k.

1 1i i 2 =1 r 1  2 r

k rr 1, 2, ... , k,).[.. .. 1i ki 2 """ kr-I r :

We now wish to prove (as indicated briefly in Section 3) that

SPI and SP2 are vitiated by interaction, while SP3's validity

remains unaltered.

Theorem 1. Let nI be the smallest sample size for which

procedure SPl guarantees P(CSISPl) > P* whenever 6 > 6* in

a model with zero interactions. Then in a general (non-

zero interaction) model,

inf P(CSISPI) <1
0o(6*) -

where Q(6*) = {(PI' P2, ...' VK) : U[K]-[K-I -

6* = min{ 1  , 6*I.

Before proceeding to prove Theorem 1, we will show

that (in the presence of interaction) not only may the cell

I selected by SPI not be the best cell, but it may be the

case (with high probability) that, for each of the r

factors, no column with the respective largest (marginal)

sample mean contains the best cell. The proof will utilize

an addition of interaction to achieve such a situation.

i To verify the claims of the above paragraph, consider

a model with no interactions. By labeling and relabeling

Ithe cells, we may arrange our experiment so that
1!

I __



(1) (2) Cr)
E. ) -+ [i I + .. . + 

1 i , 2, .. ,k ; i 2  1 , 2, ... 2; ...;  ir  , k . , kr)

still with a. 0 for = 1, 2, ... , r. (Thus,

cell (1, 1, ... , 1) is now the worst cell, while cell

(k!, k ... , kr) is the best.)

Now, to achieve the desired situation, we assume without

loss of generality that k. > k > 2 Cj 2, 3, ... , r) and

that all interactions are zero except for highest-order

interactions. For the case kl= 2, see Remark 2 following
the proof of Theorem 1. In the case k > 2, we add highest-

order interactions to each E(Xi ..i " ) as multiples of a

number "a" (yet to be chosen) according to a scheme such that

cell (1, 1, ... , 1) becomes the best cell for large positive

"a". To motivate this scheme for r-factor experiments, we

first illustrate it for two-factor experiments, next

show how to extend it to three-factor experiments, and

finally explain the general case (r > 3).

For a two-factor experiment (r z 2), add multiples of

a (yet to be chosen) to each E(Xili) as specified in
12

Figure 1 to form model E(X 1i i (a)). Note that there is a
12

simple pattern over most of the table of Figure 1 (except

for row 1 and column 1) and that (except for cell (1,1))

row 1 and column 1 entries are chosen so the appropriate

row or column sum is zero. Finally, the cell (1,I) entry

is chosen so that the row 1 and column 1 sums are each

zero also. The added multiples of "a" are the interactions

e(12) (a), and satisfy a i(2 (a) 2 (12) (a) 0
12 1il '1'2 i2 :1 l 12

10
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for all a. (Note that cell (1,i) is best for large positive

a.)

Now "a" can be chosen so that, letting fi i (kl,k 2 ) be

the Figure I entry in row i I and column i2, we

simultaneously satisfy
(() +(1 2) (12) ( 2) +aC2)+6(V(iV+ai +a) +(Iil(i2)>(lal+)

ik+2) El(l 12 1 i1') 11

d l] - 2  112

@j i.e.

(1) (2) kk2 )a> ) + (2) f (kl,ka+6(V(ii 2 ) li))

ll] E ll 12 )IaI ill [li2]+ Ii2

i.e.
] + ~[.2) - (1) (2) + 6*

Si(V(i I i2 ) s (1,1))I a> fllCklk 2 )_fl (kl,k 2)

(where it is evident from Figure 1 that the denominator is > 0).

For this purpose it suffices to take

kl] + aak2 1} - fall] +aI + 6*

i a = 6 (k 1-l)(kl-2)(k1 3)

For a three-factor experiment (r = 3),

E(X. - (1a~ ) (2) ( 3) (12) ( 13) ( 23) c(123)
1(Xili213) i1 i 2  13  i 2 1i13 123 i1i2i 3

U 1 =1 2, ... a kl; i2 = 1, 2, ...1 k2; i3  i 23 , k3),

where P and cts are unknown parameters with

k I  k 2  k 3
1 ic) = 2  (2) 3 (3)

X a I aj2  = Y ai3
i i 2 = i2 31 3

k1  k2 kI 1  k k k31 (12)= 2 (2)_ ( 3 I3 2 (23) 3 (23)_

,L I (X , I = I- a.. =0

I1 i i 1 i2 i2=1 1 i2 i1=1 3.1 3 i3=1 1 13 i2 1 121 23 i 1 213

12



2! 3I (123) (123(123
ZI 1 23 i =1 1 2 3 i = 1 1 2 13

Figure 2. Three-factor experiment in the form of a cuboid.

Factr 3(Factor j has k levels Qi 1, 2, 3)..)

Figure 23hw h he-atr xpieta uod

k13

Ik3-1
2_ _ _ _ _ _ _ _ _ _ _ _



I
I

where fi1i2(kl, k2 ) is as specified in Figure 1. The

other levels of factor 3 have zero second-order interactions

in each cell, except for the first level, in which we add

I fli2 (kl, k2 )a(k1 -l) in cells (il, i2, 1), where again

Sili2 (.kl, k2 ) is as specified in Figure 1. This makes

the column sums (corresponding to factor 3) zero, and the

interactions all satisfy the model restrictions. (Note

that cell (1, 1, 1) is best for lar-e positive a.)

Let fiii Ck1 , k2, k3 ) denote the number of multiples

of a added to cell Ci ikl

i 2  1 i, ... , k2 ; i3 = 1, ... , k 3). Then a can be chosen

so that we simultaneously satisfy

V+((I)U()+C(3+f ll(klk 3,3)> W(x(1) +X(2) + (3)11 (][lllk,k 2 ,k3)a>m (i)]+ 1~2 ++() 3 fl l- al[3

I i +f.i3(kk 2 ,k3 )a +6*(V(ilj 2,ji ) (1, i, 1)),

i.e.

fa~l +a2) +a(3)1 } ,(l)+ j(2) +a(3)16

S(1+ii2]  [i3] Ill[1 Ill
a > f1 1 1 (k2, 2 1k3 ) - fi1i2i3klqk2k3) Milli2 i3) lll))

(where the denominator is > 0).

For this purpose it suffices to take

la) + a(2) + a(3) )-a(1) (2)L + a(3)) + 6*

a 6 {c 1] Lk 2] e[k 31(ai +1 a1l] 1l1
lk2 ( 2)(k 1l)kl(kl+2)

I general case of an r-factor experiment (r > 2) is

handled by induction on r, using the method shown to proceed

I from r = 2 to r = 3 above. Namely, suppose we have an

interaction scheme for an (r-l)-factor experiment where

all the interactions are zero except the highest-order

ones. In order to extend it to an r-factor experiment,

suppose that the rth factor has kr levels. In the last

14
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3 Ck 1) levels of factor r (tht is, from k-kl2 through kr ,
both inclusive), we add interactions of highest-order as in
the (r-l)-factor experiment scheme, but with sign of each
entry reversed. The rest of the levels (except for the first
one) receive zero highest-order interaction in each cell.
Then to make appropriate interaction sums zero, we add
highest-order interactions in the first level in such a way
that each entry is (k1-1) times the corresponding entry of
the (r-l)-factor experiment scheme. As before we may
find a large positive number a such that cell (1. 1. )
is best.

We are now in a position to prove Theorem 1.
Proof of Theorem 1. Let n I for SPI satisfy P(CSISPl) > P*
whenever > in a model with zero interactions (which, of
course, implies a sample size N per cell, with n. = NK).
Now are independent normal. + .... ... . .. • , r e d d e
random variables with (possibly different) means and the
same variance klo2/(NK), hence

1!1Y 2 . .. . . .. . k l . . .. ° *

are independent N(0,1) random variables when we define

. . - E(X . )Z1 .. ..1, 
i , 2, . , kl)

IMI
i Now consider model E(Xil2.i(a)) with "a" chosen so large i

1. positive that cell (1, 1, ..., 1) is best, according to i"the interaction scheme previously given. Then, in this model

I with interaction,

4I
115

I.
______________________



P(CSISPi) p max( k , '

.k2
7 max(R %g *.. )M]

. l...... y ....1 P 
. 2

)  
R 6 . ."

* PEYI1  > 0, Y12  > 0, Y > 0;

. Y21. > 0, Y 2 > 0, ... Y k _ >  0;

21.2 2k21 Yri > 0, Yr2 > 0, Yr,k rl > 0]

where

SYli I =7 **gl -xgi+ (i I  1 , 2, ... , k-
... 0, ,+l1 ...... 1

Y2i % . i2 +1..... i 2  1, 2, ... , k2 -1),

Now (Y1 ..... Y+i

has a (k1I + k 2 + ... + kr -r)-variate normal distribution with
(1) 2 (1 ~(1) .. 2a2k1

E i 1 ) = .. 1 I V 1 +i= (ir  =1, 2,..., k[-V Y.

(2) - (2) =2a
2k 2 1,2 ..

y 2i )o =I Y I 3[ikl-l Y21 2 k2 -17 " 2 = 1 , k - ),
2 ai) [i] Va(Yi 2

,E(Yll 0= r) a (l) 2 UCiyl] k : (iI  1 , 2,.. k-1),

Yr)= r r] - (r+l] Var(Yri ) = -'kr 1, 2, ... , kr-1),

CovCYli, Yl I K) -mc-(i F i),

1. 16
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0 2kr

Cov(Yj ' n,  TJ r
S( Y = , 2,..., k (-;  i 2  j1 2,. .. . ; ir = 1 , 2,..., k - ).

j Thus (Y .II'YIlk k- l) . Y2,k2-1) "''.IY l''Yikr-l are

independent, so

P(CSISP1) z R P[Y I > 0, g2 > 0, . j,k-1 >
j = jjl

Considering the first factor,

P[Y1 1>0, Y12>0$..., Yl ,k1 -l > 0 ]

aX 1  = max( 1 .. .. . ., R... ,

< P[~ ma * g* ,.. 7

Proceeding similarly, we find that

PCYjl > 0, Y > O, ... , Y > O] < 2,

j hence

P(CSISPI) < 11K

as was to be proven.

Remark 1. Note that for all schemes of adding interactions

and for all kj > 2 (Q = 1, 2, ... , r), procedure SPI still[ achieves probability at least P* for selecting the cell

associated with u + Q c[k-] (which may not be the "best"

iII



cell after adding interactions). This is true because

K Ithe sum of interactions in each row and in each column

is zero arid so the (marginal) sample means do not change.

Remark 2. In the case k1  2, we add interactions in

such a way that cell (kl, k 2 , ... I kr) does not remain

K best. From Remark 1, it then follows that

P(CS1SPI) < I-P*
S7

Theorem 2. Let n2 be the smallest sample size for which
procedure SP2 guarantees F(CSISP2) > P* whenever 6 > 6*
in a model with zero interactions. Then in a general
(non-zero interaction) model,

inf P(CSISP2) < 1
S2C6*) min k.

l<j<r 3
where Q(6*) {G

t I- Proof of Theorem 2. Let n2 for SP2 satisfy PCCSISP2) > P*
whenever 6 > 6* in a model with zero interactions. Let factors

be ordered as in the discussion following the statement of
Theorem 1, and consider model E(X ... (a)) with a set so

12..J r
thatcell (1, 1, ... , 1) is best. Suppose, without loss of
generality, that the experimenter decides to first fix levels
of each factor except factor j (and hence experiments across
the levels of factor j). Define events

Fji j  (Experimenter starts with level i. of factor j),
Ei " = (Experimenter selects level ij of factor j),

1 k; j = 1, ... , r) so that event EE 2  r

corresponds to a correct selection. Now, for any c>O, a may

be taken sufficiently large that

18
Ii;



I

JP(E 1 1 E 2 1 E... 1 F. ) < C i )

Now, letting F. F U. .JF (the event that the

experimenter starts with factor j) and taking

P(F 1jFj) * . P(F~k.) = 1/k. as a reasonable model

in light of no prior kn wledge (on the part of the experimenter)
as to which levels are better than others, we find

k.

P(CSISP2, F) NE 1 " r l F ji.I F - )

] =1

kI P(F. I ME EI E IF )
aS I ] j 11 21 "' rl ji]

= P(F 3 lIF 3 )P(EIIE 2 1 '''ErlF31)i 2  3 (jj~)( 1 E21 '*'EP1I Fji]k.P(Fj. I i ME 1 -E 2 -. E V1 IFj +i2PF iI E1 2*'Er F
H. 1 + 1

and the theorem follows.

Theorem 3. Let n be the smallest sample size for which

procedure SP3 guarantees P(CSISP3) > P* whenever 6 > 64 in

a model with zero interactions. Then in a general (non-

zero interaction) model,

P(CSISP3) > P* whenever v[K] - U[XI > 6 min6 ,.,.
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II

Proof of Theorem 3. In a model with zero interactions, suppose that cell

,(ml I M
2 , "' m r ) is best. Then, if M observations per cell have been taker;,

£ whenever 6 > 6* componentwise we have

F(CSISP3) P[7max (XiILmm.. .In, , i 2 1 ... ir  li2"" r

-- J 1,

L(X
P[XS • < ".mlm ._ _ _ _ _ __ _ _ _ _

., ... , k (5 , .... , r)J

min(6 60 . -1
>Pr. < +

ij~~~~l,~ M2. .. . j ( ,. .. )

illf P(CSiSP3) -x + ) ( x .

whele 4(.) and (-) denote the standard normal d'stirbutic: an, .ro! v

functions, respectively. For this inf to be > F* we need

M > 2. .

where hK(P*) is the solution h of the ecuation

-° i* j (~d = .*

Now in a general (non-zero interaction) model suppose that cell

(C!, c, .... cr) is best, M as above is used, and

[K]- [K_]] >_ 6 r min{6 , . . ... 6 1. Then

P(CSjSP3) P[ O < . e + 2r

. ~~~~ij=l, 2,...k jl .. )
i - ~1112. "i tr - C21" . o

1, 2, k. , 2, r)]

- *K-1(x + -- )(x)dx P*

and the theorem follos.

I2 G
a



Thus, while procedure SP3 is fully robust to the pre-

sence of interaction, procedures SP1 and SP2 may be fully
vitiated by interaction. One may therefore wish to estimate

interaction size and choose accordingly between SPi and SP3

in practice. An SP4 which incorporates this idea (acting

as does SP1 when interactions are "negligible" and as does

SP3 when interactions are "large") is now being developed.

1 1
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